
Introduction
What is Irys? Irys is the first programmable layer-1 datachain, purpose-built to make data
actionable—unlocking value creation and network effects across AI, DePIN, and other data-
centric ecosystems.

Irys is an integrated , including a high-performance storage layer and execution
environment to enable . Irys enables any amount of data to be stored
onchain for any period of time (including permanent) for a fraction of the cost. Irys introduces
several new primitives to make the data throughput and latency faster than previous players
like Filecoin and Arweave.

Irys includes IrysVM, which enables data to be used within smart contracts, meaning a user
could store 1EB of data for 1000x cheaper than other chains while using it within their
onchain apps.

Irys achieves this by introducing several new primitives:

PoW/S hybrid consensus for more reliable data and faster consensus

Efficient sampling for lower user and miner costs for storing data

Matrix packing and capacity partitions for higher data throughput and lower latency

A multi-ledger system enabling users to store data for any period of time

IrysVM––an EVM++ implementation––for programmable data

Irys is a layer-1 built with AI applications as first-class citizens. As Irys has integrated a high-
performance storage layer, an integrated data availability layer, a native GPU supply, and a
verifiable execution environment, developers can build AI applications for a fraction of the
time and cost.

datachain
programmable data

Computation problems

GPU marketplace and decentralized AI protocols rely
centralized systemts for managing job records, compute, and
execution.

Data-centric chains (e.g., Filecoin, Arweave) are limited to
storage use cases and are profibitively expensive.

AI requires deeply intergrated storage and execution. Existing
blockchains can barely support either-let alone both.

Training datasets lack accessibility and quality controls,
leading to unverified and unreliable data.

Storing large-scale training datasets onchain is expensive.

No reliable system to fairy compensate contributors or
incentivize the creation of high-quality datasets.

Inference tasks depend on offchain resources, with no
mechanisms for verifying resource allocation.

Lacks cryotographic proofs to verify accuracy or authenticity.

Inference workflows are constrained by slow, expensive data
access.

training problems

inference problems

https://docs.irys.xyz/learn/what/what-a-datachain-is
https://docs.irys.xyz/learn/why/why-programmable-data

Comparison with other datachains
This comparison outlines several key differences in user features and protocol features.

Execution IrysVM allows you to
develop onchain apps
with programmable
data.

FVM, which allows you
to create deals
programmatically.
Limited utility as
Filecoin deals are cold,
and data can’t be used
in apps.

No native execution.
They created AO, but
it’s a trusted rollup that
isn’t dependent on
Arweave.

Type of storage Hot access with cold
pricing.

Any duration. Uses a
multi-ledger system to
support any term and
permanent data

Cold storage.

Term based. The base
primitive is “deal,” which
allows you to store data
for 250 days.

Hot.

Permanently only.

Latency Instant. Partitions are
pre-packed, meaning
writing the data is
limited by drive speed
(limited by physics).

6 hours to encode and
decode data due to the
use of ZK-friendly
encoding. Insanely
expensive at an
exabyte scale.

Sub second per chunk
but low parallelization
meaning finalizing a
transaction can take
hours.

Throughput Limited by hardware
and physics.

Scales horizontally with
number of miners
(upper limit is [average
miner bandwidth *
number of miners])

Limited to the
throughput of a single
node on the network as
the whole network has
to store the data.

Reliability
(chance your
data drops)

Very reliable with the
use of economic
security

Very reliable due to the
use of ZK

Unreliable with
thousands of dropped
pieces of data

Storage costs Permanent data: $2.50/
GB

Shorter-term:
$0.0000753/GB/day

N/A $20/GB (and rising)

High-level architecture
Irys is an integrated chain––integrating both storage and execution into a single chain
enabling users to store data onchain for a fraction of the costs and building onchain
application logic atop the data.

Our focus when designing Irys was vertical integration––the ability for developers to rely on
only Irys for building their apps. We’ve observed developers need to use 100 different
infrastructures to build their apps, and Irys aims to vertically integrate every part of the stack.

The below diagram outlines the processes within Irys that enable it to have its unique
properties:

Irys combines high-performance data with robust verification, enabling a native execution
environment for onchain data. Traditional storage protocols struggle to balance these two
aspects, making it difficult to manage execution and storage in the same chain, meaning
building onchain apps on datachains has been impossible to date. Irys overcomes this
tradeoff by uniting Proof of Work (PoW) with staking and slashing mechanisms. This enables
Irys to efficiently handle all forms of data alongside having robust security for fully onchain
applications. We call this integration of secure storage and native execution in a single
protocol Programmable Data.

Pledges 16TB capacity
partition to Irys

Irys assigns partitions to miner addresses

to evenly distribute hashpower across the
network, maximizing decentralization and

data distribution

Irys uses staking and pledging to align node
operators’ incentives with honestly providing

storage while making Sybil attacks
uneconomical

Blocks produced from data
partitions earn higher rewards than

capacity partitions encouraging
miners to store data

Miners must pack their storage
as capacity with their own

cryptographic fingerprint before
they can mine it

Stakes $IRYS tokens

for a mining address

Irys assings uniques
partition hash

Packs partition with
uniques hash

Produces Blocks &
earns rewards

Syncs data with

other miners

Irys assigns partition

to data ledger

MINE PARTITION

Blocks and transactions
There are two types of transactions:

Data transaction: a transaction which is storing data on the network

Execution transaction: a transaction that interacts with a smart contract through IrysVM.
This includes programmable data transactions.

Each block contains two sets of transactions in separate block lanes. The block structure can
be seen below:

Field Name Description

block_hash The block identifier

height The block height

diff Difficulty threshold used to produce the current block

cumulative_diff
The sum of the average number of hashes computed by the network
to produce the past blocks, including this one

IrysVM enables programmable data––the ability to tap into large amounts of data stored on
Irys. It turns data from a static commodity to a useful asset that can be utilized and
manipulated by smart contracts.

0 1 2 3 4 5 6

Data Partitions

Publish ledger

IrysVM smart contracts can
store state internally like
any EVM smart contract
and like the EVM this state
is expensive and
constrained

Smart Contract with
Programmable data have
access to data stored
anywhere on Irys’s
permanent ledger. This
makes them able to
tokenize data, transfer
ownership, sell licensense,
verify data, pay royalties,
and much much more

IrysVM programmable data
transactions specify the
range of data they want to
read from anywhere in the
publish ledger

Data stored in Irys’s publish
ledger is significantly
cheaper than smart

contract state and

supports much larger
volumes of data

Regular EVM transactions

only have access to smart
contract state.

IRYSVM smart contract

Transactions Transactions

last_diff_timestamp
Timestamp (in milliseconds) since UNIX_EPOCH of the last difficulty
adjustment

solution_hash The solution hash for the block

previous_solution_hash The solution hash of the previous block in the chain

last_epoch_hash The solution hash of the last epoch block

chunk_hash SHA-256 hash of the PoA chunk (unencoded) bytes

previous_block_hash Previous block identifier

previous_cumulative_diff The previous block's cumulative difficulty

poa The recall chunk-proof

reward_address The address that the block reward should be sent to

miner_address
The address of the block producer - used to validate the block hash/
signature & the PoA chunk

signature The block signature

timestamp
Timestamp (in milliseconds) since UNIX_EPOCH of when the block
was discovered/produced

ledgers A list of transaction ledgers, one for each active data ledger

evm_block_hash The Ethereum Virtual Machine block hash

vdf_limiter_info Information about the Verifiable Delay Function limiter

Irys uses block lanes to ensure that users can always submit a data transaction, even when
the execution lane is congested. This allows data transactions to have stable pricing.

Partition Lifecycle (Capacity & Data, Multi Ledger)
Irys introduces a multi-leader system where data can seamlessly transition between different
terms. This effectively enables users to store data for any period of time (e.g., 1 day, 1 week,
1 year, or forever). There are also inbuilt mechanisms for “promoting” data to longer-term
ledgers––e.g,. when a user requests to store data on the permanent ledger, it enters the 5-
day ledger and transitions to the permanent ledger once it’s been verified by the network.

A ledger is a collection of data with a shared property (typically duration), i.e., all data in
ledger 0 is stored for 5 days.

Partition Lifecycle
Ledgers on Irys are split up into 16TB partitions. This allows miners to affordably use HDDs
and not be outcompeted by SSDs.

0 1 2 3 4 5 6 7

Submit

Ledger

expired expiring active

Data Partitions

5 epochs1 epoch

storage term

0 1 2 3 4 5 6 7

storage term

Publish

Ledger

epochs

active

Data Partitions

promote

FOREVER LEDGER Week Ledgermonth ledger day ledger

L1 Blockchain

Irys measures the amount of data uploaded and then uses it to project the number of
partitions needed on standby. These standby partitions do not contain any data (yet) and are
referred to as Capacity Partitions.

Step 1: Partition Pledging

Miners post a pledge transaction to the network indicating their willingness to bring a new
partition online. The protocol then randomly assigns unclaimed capacity partitions to the
pledged miners; any miners who don’t receive capacity partition assignments have their
pledges refunded.

Step 2: Partition Packing

Once assigned a Capacity Partition, the miner packs it using Irys’ matrix packing scheme.
This process fully encodes the miner’s fingerprint into the partition.

Step 3: Partition Mining

Once a capacity partition is packed, the protocol assigns a random 200MB sequential read
to the miner every second. The miner takes these 200MB reads, splits them into 800 256KiB
chunks, and proceeds to hash each chunk, looking for a mining solution. If the miner is lucky
enough to find a mining solution, it wins the right to produce a new block and announce it to
the network, thus earning rewards.

Step 4: Ledger Assignment

When it comes time to add more storage capacity to one of Irys’ data ledgers, the protocol
will randomly select a Capacity Partition that is actively being mined. The randomness is
weighted towards partitions used to mine blocks, rewarding miners who have been
participating longer and have been effective in mining.

Being assigned to a data ledger and mining it has higher rewards than mining empty
capacity partitions, so miners are incentivized to demonstrate their capability by mining
capacity efficiently.

Step 5: Partition Departure

There are two ways partitions leave the network: orderly departures and disorderly
departures.

Orderly Departure

The miner posts a transaction to un-pledge their partition and recover the commitment
they staked initially.

A timeout period begins when the protocol assigns another Capacity Partition to
synchronize the data being taken offline.

Once the timeout has passed, the departing miner can recover their staked commitment
and remove their partition.

If the miner goes offline before the timeout has passed, they risk losing their pledged
bond.

Disorderly Departure

A miner engages in adversarial behavior toward the network (double signing blocks, for
example).

The protocol takes their staked commitment.

The protocol assigns a new Capacity Partition to fill gaps left by the adversarial miner.

This is an undesirable departure as the network will have to assign new capacity partitions
quickly. Because of this, Irys requires miners to make a significant upfront investment by
staking tokens to their mining address in order to participate in the protocol and earn
rewards.

Matrix packing
Packing describes the process of miners encoding data with their staking address. This
proves they’re storing a unique replica of the data, as opposed to mining off a single remote
copy (a common attack vector on datachains).

Irys introduces Matrix Packing, which uses a VDF to encode the miner's address into each
256KiB chunk they store. This provides sufficient computational cost for each bit of data,
making any adversarial mining pattern unprofitable. The process is outlined in detail in the
below image:

PoW/S consensus
Irys introduces a hybrid Proof-of-Work-Stake consensus algorithm. This was done to achieve
the following set of requirements:

● Sustainable economics for permanent data

● Minimize inflationary pressure long-term

● Create accountability for miners such that they can be punished for malicious behavior

● Must reliably sample all data stored once per day

A hybrid consensus enables us to adopt PoW economics with security mechanisms like
slashing to provide maximally reliable onchain data with performant execution.

Consensus algorithm
Irys uses a process known as efficient sampling, where the chain guarantees every partition
is sampled entirely once per day.

The algorithm can be summarized as so:

There is a VDF running “ticks” every 1 second, generating a seed

For every partition a miner stores, use the seed in a deterministic random function to
generate the start position of a range

Read 200MiB worth of chunks (800)

For each chunk, calculate a solution

 a. Convert into a number

If the solution is greater than the current network difficulty, then publish the block. If it’s
below the difficult,y then go back to step 1

The idea here being that miners are continuously sampling data to participate in consensus
creating a strong guarantee around data being sampled. If miners lose data then they can be
challenged and ultimately slashed if proven malicious.

VDF to synchronize read speed

Data transaction lifecycle
Each data transaction specifies a ledger the data should be stored in, and each ledger
represents a duration the data should be stored for; for example, a transaction could
represent “I want to store this 1 GB of data in ledger 0, which stores data for 2 weeks”. Once
a user has posted a transaction and all ingress proofs have been verified, the data is XOR’d
into a partition where it can be used in consensus proofs.

The only special case is when the transaction specifies the permanent ledger. In this case,
the transaction enters the submit ledger and then migrates to the permanent ledger once 10
miners have proved they’re storing the data.

One key requirement for Irys was to force people to use HDDs, or in other words, don’t allow
people to outcompete by using SSDs. A VDF is used to achieve this by only allowing 200MB
to be read every second per partition a miner stores, essentially limiting the read speed of
each partition at 200MB (approximately the max read speed of an HDD).

If the difficulty is greater than the network difficulty and the miner has sufficient stake, the
block is accepted.

Ingress proofs

An ingress proof is a Merkle root that can only be generated by accessing the chunks of a
transaction's data. Ingress proofs are used to prove a miner has some data. This is a
required step before miners can store data, providing evidence that they store a unique
replica of the data.

The data chunks are hashed together with the miner's address to create a proof unique to
that mining address. This process makes the proofs easy to generate and validate by
someone with the data. To prevent false claims, these proofs must also be signed by the
miner's private key. Without this signature, any miner with access to the data could generate
proofs for another mining address, falsely claiming that they had downloaded the data.

Identify recently added transactions in the submit ledger that are waiting to be promoted to
the publish ledger. Obtain the data associated with these transactions, either directly from a
user or through gossip with other miners.

Once all the data chunks are collected, create an ingress proof as follows:

 Split the data into chunks and hash each chunk together with the miner's address.

 (note: chunk 5 is split into 5a and 5b to build a more balanced Merkle tree.)

Continue hashing these hashes to build the branches of a Merkle tree.

Compute the root hash of the Merkle tree.

Sign the root hash with the private key associated with the mining address used in step 1.

IrysVM and programmable data
Irys introduces IrysVM, an EVM++ implementation, which adds new opcodes. The main
upgrade made is to enable programmable data –– the use of stored data within smart
contracts. Essentially this means you could store 1EB of data and use portions of the data
within a secure environment.

To fully implement programmable data, we must integrate the feature across multiple layers
in the tech stack. Starting with transactions that allow the caller to specify the range of
chunks they wish to access with their PD SmartContract call. Next, gossip the transaction
and request the range of chunks to verify their availability. Finally, include the transaction in a
block and execute the state transition.

Posting Transactions

To post a PD transaction the transaction must specify the range of chunks it wishes to have
available during the SmartContract invocation. To maintain compatibility with EVM toolchains
this is done by including the range of chunks to reference as elements using
access lists, where the address is the address of the PD precompile, and the data is one or
more range specifications.

EIP-2930

Range Specification

Chunk range specification follows a simple format.

<partition_index>:<offset>:<chunk_count>

partition_index: The partition index in the publish ledger of the partition containing the first
chunk.

offset: The chunk offset in the partition to begin reading chunks

chunk_count: The number of sequential chunks to read after offset

partition_index: 26 bytes - 0 to a lot

offset: 4 bytes - 0 to ~80,000 (num chunks in a partition)

chunk_count: 2 bytes - 0 to 65,535 (PD is constrained to about 7,000 chunks per block, so
this is safe by an order of magnitude)

Total Binary Bytes to represent a range: 26+4+2= 32 bytes

Constraining the range to 32 bytes makes it easily storable in the EVM smart contract state.

https://eips.ethereum.org/EIPS/eip-2930

Note: Ranges are always 32 bytes, and the values are unpacked by slicing the bytes at the
correct offsets for each value.

Irys Client SDK

The default way of referencing data on Irys is by using the transaction ID, putting the burden
on the developer to locate the partition and chunk offset of the data they are interested in for
PD is high friction and requires a lot of knowledge of the internal data model of the chain.

To simplify the process of posting PD transactions, the client SDK implements some utility
methods to abstract away the complexity of specifying chunk ranges.

Estimating Transaction Price

The price of PD is determined by the same transaction simulation that estimates gas prices
for posting transactions to the EVM. Because the chunk range is included in the call data of
the transaction, when the simulation is run the simulation mechanism includes the pricing for
the number of chunks needed to be retrieved along with the computational budget of the
transaction.

To read more about how PD chunks are priced, see the following document.

Gossip & Mempool

An important constraint on PD transactions is the maximum capacity for propagating PD
chunks between a majority of nodes on the network between blocks.

Transmission

When a node receives a PD transaction, it broadcasts it to its peers, indicating whether it has
the chunks. Receiving peers may request the chunks in their response.

The broadcasting node tracks which peers need the chunks and sends them after receiving
them.

const =chunkRange getTxChunkRange(txid);

The implementation of this function is provided by the gateway the client is using.

It looks up the bundle_txid if the txid is actually a DataItem ID

It verifies the txid is in the Publish Ledger

It looks up the chunk_offset in the Publish Ledger

It looks up the partition_index in the Publish ledger.

It uses 3 & 4 to compute the partition_offset.

It uses the Publish Ledger txid to look up the size of the transaction data.

It computes the number of chunks required to read the transaction.

It builds a Range Specification and returns it to the caller.

https://docs.google.com/document/u/0/d/1YtDAtOIQmXmvPQxgrtQxDPwB8gHLx6Ta63SNjHcX92k/edit

Receiving peers also broadcast the PD transaction, marking peers that have already
received it and noting which peers have the chunks.

When a peer receives the chunks, it sends them to peers lacking them.

If a peer hasn't received the chunks after some time, it may retrieve them from assigned
storage partitions by inspecting the ledger, locating partition owners, and requesting the
chunks from a randomly chosen partition.

Validation

Transaction validation follows the same static validation as other transactions.

Chunk validation is a little more complicated. PD Transaction chunks can be retrieved in a
number of ways.

The node has the cached unpacked chunks locally.

The node has the packed chunks in a partition they mine.

The node receives unpacked chunks from a peer.

A node requests packed/unpacked chunks from a peer.

Cached Unpacked Chunks: In this case, the node has already validated the chunks with
their Merkle roots and can be confident the data in them is correct and ready to be exposed
to the VM for PD execution.

Local Packed Chunks: The node happens to mine the partition that contains the PD chunks
requested by the transaction, but they are packed.

The node:

Creates the entropy for the chunk range

Unpacks the chunks using the computed entropy

Builds a merkle-root out of the unpacked chunks

Looks up the transaction that posted the chunks from its block index

Compares the computed merkle-root with the one in the transaction.

If valid, the node posts the unpacked chunks to any peers marked as not having them.

Receives Unpacked Chunks: In this case the node is being sent unpacked chunks by one
of their peers. While they do not have to unpack the chunks they do need to verify the
chunks contain the correct data or risk proposing an invalid block.

The Node:

Follow steps 4-6 from the Local Packed Chunks path.

Requests Chunks: As a failsafe, if the node is not receiving any of the chunks within time D,
where D is the propagation delay of the network (Assume D = 200ms for testnet).

The node:

Looks up the partitions responsible for storing the chunks.

Picks a partition at random to request the chunks.

 a. If the partition provides packed chunks, unpack them.

Follow steps 4-6 from the Local Packed Chunks path.

Block Production

After a mining node receives a PD transaction and its chunks and validates them, it can
include the transaction in a block. To minimize the chance of producing a block with a PD
transaction that the majority haven’t received the chunks for, the miner may wait for the
propagation delay D before including it. This allows most of the network to retrieve the
chunks and validate the PD transaction when it's included in a block.

Exposing Chunk Data

PD transactions include an instruction to a precompiled “system” contract which takes the
Range specification as an input. This precompile will bring the chunk data into scope. There
are at least two possible approaches.

Smart Contract Execution
Executing a PD smart contract interaction requires further exploration. There are a few
possible approaches, but they will require exploration of the code to evaluate their feasibility.

Return Value: The foreign call to the precompiled “system” contract could return the
chunks specified by the range as a buffer.

Global State: Once the precompiled “system” contract has been invoked the chunks
become accessible via a global that is exposed to all subsequent instructions in the PD
transaction.

Calculating Compute Units

Because the execution of a particular smart contract function may take one code path or
another depending on the data read from the chunks, calculating compute units (CUs) can
be problematic. There are a few possible approaches

Simulate With Chunks: The only way to deterministically simulate the CUs required to
complete the execution of the instruction is to have the unpacked chunks available
during the simulation. This would require the simulating node to retrieve the unpacked
chunks during the simulation request.

Simulate Compute Upper Bound: In this case, the simulation would evaluate all code
paths and return the cost of the most compute-intensive code path. This way the user
always pays enough gas for any possible computational resources.

Programmable data roadmap
Blob Data - MVP

The first version of PD transactions will expose chunks as buffers or blob data to the contract
and leave the interpretation of these bytes up to the caller. This will allow PD chunks to have
any structure or format the caller can imagine.

Bundle Format v.1 - Bundles

Once the blob chunks are working, the next layer of functionality will be a DX upgrade that
allows PD contracts to load a bundle and data items from the chunks. The IrysVM will parse
the chunks in the range specification as a v1 bundle format.

Bundle Format v.2 - DataItems

Once the v2 (merkelized) bundle format exists, a DX upgrade will allow parsing of specific
data items from a larger bundle or retrieve smaller nested bundles (or their data items) by
loading only the chunks that store the specific data items the caller is interested in.

Programmable data L2s

In the future, we expect users will develop programmable data L2s that expand the compute
capacity beyond a single-state machine. The end goal here is a shared dataset with the
ability for anyone to spin up L2s to tap into data, compute, and liquidity resources.

Tokenomics
Token utility

The IRYS token is composed of four core components:

$IRYS : The $IRYS token is the Irys platform native asset.

Fees: Fees are charged on , including payment for data storage
and protocol execution. Unlike other datachains, both temporary and permanent data
storage fees are pegged to a USD range and updated on a yearly basis.

Security: Token rewards are used to incentivize node validators contributing to

 and to prevent spam and denial-of-service attacks.

Endowment: $IRYS is used to fund the endowment, which covers miners’ future
liabilities

Staking: Miners must , signaling their commitment to the
network and creating clear economic consequences for failing to uphold their
responsibilities. Users will also be able to delegate $IRYS tokens in order to passively
participate in contributing to the network’s security model.

all network operations

Irys
consensus

lock $IRYS tokens as collateral

https://docs.irys.xyz/learn/protocol-overview/transactions-overview
https://docs.irys.xyz/learn/protocol-overview/irys-consensus-overview
https://docs.irys.xyz/learn/protocol-overview/irys-consensus-overview
https://docs.irys.xyz/learn/network-overview/becoming-a-miner-on-irys

Burn mechanism

$IRYS will have strong deflationary pressure early into its lifetime as the inflationary rewards
decay. Irys has a couple of burn mechanisms:

Long-term storage: fees paid towards “longer-term” ledgers (i.e.,>2 weeks) will be
contributed to an endowment where the tokens will likely never be released, creating an
effective burn/sink mechanism.

Fee market on execution transaction: Irys will burn 50% of fees from execution
transactions, so as programmable data demand increases, there’ll be greater burn
occurring.

Incentivizing hardware

Irys adopts a traditional inflation decay curve which is distributed via block rewards to miners
for storing data. The starting inflation rate is 8% and halves every 2 years.

[Insert graph to represent curve]

Fees
Minimum Fee Parameter

Irys implements a minimum fee to mitigate network spam and to ensure that tx fees can be
easily denominated with the atomic units.

The minimum fee is $0.001 (1/10th of a cent) as determined by Irys’ price approximation
mechanism.

The same minimum fee is paid to the provider of ingress-proofs for publishing permanent
data.

Term Fees

The pricing model for term storage determines the cost of providing storage for data, 10
replicas for n epochs

Pricing Parameter

Annualized Cost of operating 16TB HDD

Number of Replicas

Calculation

Daily Cost per TB

Daily Cost of 16TB HDD

Total Fee Per Epoch Storage Price (TB)

Total Fee Per Epoch Storage Price (GB)

Epoch Fee Calculator

Number of Epochs

1

5

Value

$44

10

Value

$0.0075

$0.12

$0.0753

$0.00007358

Data Size (TB)

1

1

Total Fee Per Epoch Storage Price

$0.0753

$0.3767

An additional 5% fee is added for inclusion in the block (scales with the size of transaction
data)

As $0.00039 is below the network minimum fee of $0.01 the becomes:term_fee

1TB of Term Data in the Submit ledger (5 epochs)

term_fee
term_fee

 = term_cost + 5%

 = $0.3767 + 5% = 0.3955 -> $0.40

1GB of Term Data in the Submit ledger (5 epochs)

term_fee = $0.00039

term_fee = $0.01

Note: if repacking term partitions after they expire represents an ongoing expense to miners,
this cost will be quantified and included in the term data pricing.

Perm Fees

The pricing model for permanent data has some additional factors to account for. Because
the users are paying for centuries of storage upfront the model has to account for declines in
the physical costs of storage (due to technological gains) over that time period. Irys chooses
an extremely safe 1% annualized decline in the cost of storage as a factor for pricing
permanent data. (Observed declines in storage costs over the last 50 years have been >
25% year on year.)

Because permanent data must first pass through the submit ledger (term data) on its way to
the publish ledger, the fee includes the cost of submit ledger storage as well.

Perm data requires 10 ingress-proofs, ingress-proofs are the same as the 5% immediate
reward for including the transaction in a block. (scales with data size, shares the minimum
$0.01 fee floor).

Pricing Parameter

Annualized Cost of operating 16TB HDD

Safe annual decline in cost of storage (decay rate)

Number of Replicas

Years of storage paid for

Cost Per TB

Cost Per GB

Values

$44

1.00%

10

200

$2,381.54

$2.33

1TB of Permanent Data

perm_fee term_fee = + (ingress_fee * 10) + perm_cost

perm_fee = $0.40 + ($0.018835 * 10) + $2,381.56 -> $2,382.14

1GB of Permanent Data

perm_fee = term_fee + (ingress_fee * 10) + perm_cost

perm_fee = $0.01 + ($0.01 * 10) + $2.33 -> $2.44

If a user fails to upload data during the submit ledger term duration or the network fails to
achieve the required number of ingress-proofs, the user’s ingress_fee’s and perm_cost are
refunded when the submit ledger transaction expires at the end of 5 epochs (the submit
ledger term duration)

Consensus Pricing Mechanism

The process of promoting data from the submit ledger to the permanent ledger involves
multiple phases, resulting in a staged payment model for permanent data. All transactions,
whether intended for permanent (perm) or temporary (term) data, initially enter the submit
ledger. The payment process for term data is consistent across all transactions, while
permanent data incurs additional payments to incentivize the complete publishing process.

Term Data Payment Distribution

Additional Incentives

This payment structure creates additional incentives for miners to participate in term
ledgers:

Miners receive a payout when data expires from their partitions.

Because miners must re-pack the partitions after expiration, this additional fee
encourages ongoing participation and maintenance of the network.

The user uploads data chunks associated with their transaction .

Miners assigned to store chunks gossip them amongst themselves.

Term ledger expiration payout:

U ser posts a transaction, including the term_fee.

Block producer transaction inclusion:

Block producer includes the transaction in a block .

Block producer's balance increases by 5% of the term_fee.

Remaining 95% of term_fee is added to the treasury (tracked in block headers).

W hen the transaction expires from the submit ledger (when the partitions containing
its chunks are reset at an epoch boundary), each miner is paid their portion (term_fee
/ 10) for all assigned chunks expiring in their partition.

For a full 16TB partition, this payout is approximately $0.60 per miner.

Miners continue to earn full inflation/block rewards from any blocks they produce while
mining these partitions.

Permanent Data Payment Distribution

Fee Structure

Users pay the following fees for permanent data storage:

term_fee: Standard fee for term storage

perm_fee: Fee for permanent storage

5% of term_fee for block inclusion

5% of term_fee for each ingress-proof

Fee Distribution

term_fee: Processed identically to regular term data transactions.

Block Inclusion Fee:

5% of term_fee paid immediately to the block producer including the transaction.

Ingress-Proof Fees:

5% of term_fee for each ingress-proof provided.

perm_fee:

Prepaid amount covering 200 years x 10 replicas with 1% annual decline in storage
costs.

Added to the treasury.

Submit Ledger Expiry (Epoch Boundary)
Processing
Refund Scenario

If transaction data was never uploaded:

Ingress-proof fees and perm_fee are refunded to the uploader.

Promotion Scenario

If data was promoted to permanent storage:

Protocol inspects all permanent transactions with ingress-proofs.

Pays out the ingress-provers.

Epoch Boundary Payment Distribution Tasks

For each expiring submit ledger transaction:

Inspect the transaction to determine if it was intended for the publish ledger.

If intended for publish ledger, check if it arrived:

If Published: Reward ingress-proof submitters with their 5% rewards.

If not Published: Refund perm_fee and ingress-proof fees to the address that posted
the tx.

Tabulate the amount of data posted to the expiring partition.

Pay each partition owner the term_fee for storing that amount of data.

Future work
Scaling programmable data

Programmable data at its core is the ability to have a shared dataset where any can
permissionlessly access and build onchain applications atop. A key part of achieving this end
vision is Programmable Data L2s.

These L2s would scale IrysVM and enable a trustless bridge to Irys’s dataset. The end goal
of this is to have a shared dataset of the public and private states, allowing anyone to
compose on the data.

For the public state, anyone can use the data permissionlessly for their apps. Licensing can
be used to monetize the usage of this data. Private state can utilize private compute
primitives to enable apps to interact with the data.

Fast blocks and fast finality

Building applications on Irys will benefit from faster block times and programmable data L2s
will need fast finality for composability.

