
Introduction
What is Irys? Irys is the first programmable layer-1 datachain, purpose-built to make data 
actionable—unlocking value creation and network effects across AI, DePIN, and other data-
centric ecosystems.





Irys is an integrated , including a high-performance storage layer and execution 
environment to enable . Irys enables any amount of data to be stored 
onchain for any period of time (including permanent) for a fraction of the cost. Irys introduces 
several new primitives to make the data throughput and latency faster than previous players 
like Filecoin and Arweave. 





Irys includes IrysVM, which enables data to be used within smart contracts, meaning a user 
could store 1EB of data for 1000x cheaper than other chains while using it within their 
onchain apps.




Irys achieves this by introducing several new primitives:

PoW/S hybrid consensus for more reliable data and faster consensus

Efficient sampling for lower user and miner costs for storing data

Matrix packing and capacity partitions for higher data throughput and lower latency

A multi-ledger system enabling users to store data for any period of time

IrysVM––an EVM++ implementation––for programmable data



Irys is a layer-1 built with AI applications as first-class citizens. As Irys has integrated a high-
performance storage layer, an integrated data availability layer, a native GPU supply, and a 
verifiable execution environment, developers can build AI applications for a fraction of the 
time and cost.

datachain
programmable data

Computation problems

GPU marketplace and decentralized AI protocols rely 
centralized systemts for managing job records, compute, and 
execution.

Data-centric chains (e.g., Filecoin, Arweave) are limited to 
storage use cases and are profibitively expensive.

AI requires deeply intergrated storage and execution. Existing 
blockchains can barely support either-let alone both.

Training datasets lack accessibility and quality controls, 
leading to unverified and unreliable data.

Storing large-scale training datasets onchain is expensive.

No reliable system to fairy compensate contributors or 
incentivize the creation of high-quality datasets.

Inference tasks depend on offchain resources, with no 
mechanisms for verifying resource allocation.

Lacks cryotographic proofs to verify accuracy or authenticity.

Inference workflows are constrained by slow, expensive data 
access.

training problems

inference problems

https://docs.irys.xyz/learn/what/what-a-datachain-is
https://docs.irys.xyz/learn/why/why-programmable-data


Comparison with other datachains
This comparison outlines several key differences in user features and protocol features.

Execution IrysVM allows you to 
develop onchain apps 
with programmable 
data.

FVM, which allows you 
to create deals 
programmatically. 
Limited utility as 
Filecoin deals are cold, 
and data can’t be used 
in apps.

No native execution. 
They created AO, but 
it’s a trusted rollup that 
isn’t dependent on 
Arweave.

Type of storage Hot access with cold 
pricing.





Any duration. Uses a 
multi-ledger system to 
support any term and 
permanent data

Cold storage.



Term based. The base 
primitive is “deal,” which 
allows you to store data 
for 250 days.

Hot.





Permanently only.

Latency Instant. Partitions are 
pre-packed, meaning 
writing the data is 
limited by drive speed 
(limited by physics).

6 hours to encode and 
decode data due to the 
use of ZK-friendly 
encoding. Insanely 
expensive at an 
exabyte scale.

Sub second per chunk 
but low parallelization 
meaning finalizing a 
transaction can take 
hours.

Throughput Limited by hardware 
and physics.

Scales horizontally with 
number of miners 
(upper limit is [average 
miner bandwidth * 
number of miners])

Limited to the 
throughput of a single 
node on the network as 
the whole network has 
to store the data.

Reliability 
(chance your 
data drops)

Very reliable with the 
use of economic 
security

Very reliable due to the 
use of ZK

Unreliable with 
thousands of dropped 
pieces of data

Storage costs Permanent data: $2.50/
GB





Shorter-term: 
$0.0000753/GB/day

N/A $20/GB (and rising)



High-level architecture
Irys is an integrated chain––integrating both storage and execution into a single chain 
enabling users to store data onchain for a fraction of the costs and building onchain 
application logic atop the data. 





Our focus when designing Irys was vertical integration––the ability for developers to rely on 
only Irys for building their apps. We’ve observed developers need to use 100 different 
infrastructures to build their apps, and Irys aims to vertically integrate every part of the stack. 






The below diagram outlines the processes within Irys that enable it to have its unique 
properties:


Irys combines high-performance data with robust verification, enabling a native execution 
environment for onchain data. Traditional storage protocols struggle to balance these two 
aspects, making it difficult to manage execution and storage in the same chain, meaning 
building onchain apps on datachains has been impossible to date. Irys overcomes this 
tradeoff by uniting Proof of Work (PoW) with staking and slashing mechanisms. This enables 
Irys to efficiently handle all forms of data alongside having robust security for fully onchain 
applications. We call this integration of secure storage and native execution in a single 
protocol Programmable Data.

Pledges 16TB capacity 
partition to Irys

Irys assigns partitions to miner addresses 

to evenly distribute hashpower across the 
network, maximizing decentralization and 

data distribution

Irys uses staking and pledging to align node 
operators’ incentives with honestly providing 

storage while making Sybil attacks 
uneconomical

Blocks produced from data 
partitions earn higher rewards than 

capacity partitions encouraging 
miners to store data

Miners must pack their storage 
as capacity with their own 

cryptographic fingerprint before 
they can mine it

Stakes $IRYS tokens 

for a mining address

Irys assings uniques 
partition hash

Packs partition with 
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Blocks and transactions
There are two types of transactions:



Data transaction: a transaction which is storing data on the network

Execution transaction: a transaction that interacts with a smart contract through IrysVM. 
This includes programmable data transactions.



Each block contains two sets of transactions in separate block lanes. The block structure can 
be seen below:

Field Name Description

block_hash The block identifier

height The block height

diff Difficulty threshold used to produce the current block

cumulative_diff
The sum of the average number of hashes computed by the network 
to produce the past blocks, including this one

IrysVM enables programmable data––the ability to tap into large amounts of data stored on 
Irys. It turns data from a static commodity to a useful asset that can be utilized and 
manipulated by smart contracts.

0 1 2 3 4 5 6

Data Partitions

Publish ledger

IrysVM smart contracts can 
store state internally like 
any EVM smart contract 
and like the EVM this state 
is expensive and 
constrained

Smart Contract with 
Programmable data have 
access to data stored 
anywhere on Irys’s 
permanent ledger. This 
makes them able to 
tokenize data, transfer 
ownership, sell licensense, 
verify data, pay royalties, 
and much much more

IrysVM programmable data 
transactions specify the 
range of data they want to 
read from anywhere in the 
publish ledger

Data stored in Irys’s publish 
ledger is significantly 
cheaper than smart 

contract state and 

supports much larger 
volumes of data

Regular EVM transactions

only have access to smart 
contract state.

IRYSVM smart contract

Transactions Transactions



last_diff_timestamp
Timestamp (in milliseconds) since UNIX_EPOCH of the last difficulty 
adjustment

solution_hash The solution hash for the block

previous_solution_hash The solution hash of the previous block in the chain

last_epoch_hash The solution hash of the last epoch block

chunk_hash SHA-256 hash of the PoA chunk (unencoded) bytes

previous_block_hash Previous block identifier

previous_cumulative_diff The previous block's cumulative difficulty

poa The recall chunk-proof

reward_address The address that the block reward should be sent to

miner_address
The address of the block producer - used to validate the block hash/
signature & the PoA chunk

signature The block signature

timestamp
Timestamp (in milliseconds) since UNIX_EPOCH of when the block 
was discovered/produced

ledgers A list of transaction ledgers, one for each active data ledger

evm_block_hash The Ethereum Virtual Machine block hash

vdf_limiter_info Information about the Verifiable Delay Function limiter

Irys uses block lanes to ensure that users can always submit a data transaction, even when 
the execution lane is congested. This allows data transactions to have stable pricing.

Partition Lifecycle (Capacity & Data, Multi Ledger)
Irys introduces a multi-leader system where data can seamlessly transition between different 
terms. This effectively enables users to store data for any period of time (e.g., 1 day, 1 week, 
1 year, or forever). There are also inbuilt mechanisms for “promoting” data to longer-term 
ledgers––e.g,. when a user requests to store data on the permanent ledger, it enters the 5-
day ledger and transitions to the permanent ledger once it’s been verified by the network.



A ledger is a collection of data with a shared property (typically duration), i.e., all data in 
ledger 0 is stored for 5 days.

Partition Lifecycle
Ledgers on Irys are split up into 16TB partitions. This allows miners to affordably use HDDs 
and not be outcompeted by SSDs.
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Irys measures the amount of data uploaded and then uses it to project the number of 
partitions needed on standby. These standby partitions do not contain any data (yet) and are 
referred to as Capacity Partitions.

Step 1: Partition Pledging

Miners post a pledge transaction to the network indicating their willingness to bring a new 
partition online. The protocol then randomly assigns unclaimed capacity partitions to the 
pledged miners; any miners who don’t receive capacity partition assignments have their 
pledges refunded.

Step 2: Partition Packing

Once assigned a Capacity Partition, the miner packs it using Irys’ matrix packing scheme. 
This process fully encodes the miner’s fingerprint into the partition.

Step 3: Partition Mining

Once a capacity partition is packed, the protocol assigns a random 200MB sequential read 
to the miner every second. The miner takes these 200MB reads, splits them into 800 256KiB 
chunks, and proceeds to hash each chunk, looking for a mining solution. If the miner is lucky 
enough to find a mining solution, it wins the right to produce a new block and announce it to 
the network, thus earning rewards.

Step 4: Ledger Assignment

When it comes time to add more storage capacity to one of Irys’ data ledgers, the protocol 
will randomly select a Capacity Partition that is actively being mined. The randomness is 
weighted towards partitions used to mine blocks, rewarding miners who have been 
participating longer and have been effective in mining.





Being assigned to a data ledger and mining it has higher rewards than mining empty 
capacity partitions, so miners are incentivized to demonstrate their capability by mining 
capacity efficiently.




Step 5: Partition Departure

There are two ways partitions leave the network: orderly departures and disorderly 
departures.

Orderly Departure

The miner posts a transaction to un-pledge their partition and recover the commitment 
they staked initially.


A timeout period begins when the protocol assigns another Capacity Partition to 
synchronize the data being taken offline.


Once the timeout has passed, the departing miner can recover their staked commitment 
and remove their partition. 


If the miner goes offline before the timeout has passed, they risk losing their pledged 
bond. 



Disorderly Departure

A miner engages in adversarial behavior toward the network (double signing blocks, for 
example).

The protocol takes their staked commitment.

The protocol assigns a new Capacity Partition to fill gaps left by the adversarial miner.

This is an undesirable departure as the network will have to assign new capacity partitions 
quickly. Because of this, Irys requires miners to make a significant upfront investment by 
staking tokens to their mining address in order to participate in the protocol and earn 
rewards.

Matrix packing
Packing describes the process of miners encoding data with their staking address. This 
proves they’re storing a unique replica of the data, as opposed to mining off a single remote 
copy (a common attack vector on datachains). 





Irys introduces Matrix Packing, which uses a VDF to encode the miner's address into each 
256KiB chunk they store. This provides sufficient computational cost for each bit of data, 
making any adversarial mining pattern unprofitable. The process is outlined in detail in the 
below image:



PoW/S consensus
Irys introduces a hybrid Proof-of-Work-Stake consensus algorithm. This was done to achieve 
the following set of requirements:



●     Sustainable economics for permanent data

●     Minimize inflationary pressure long-term

●     Create accountability for miners such that they can be punished for malicious behavior

●     Must reliably sample all data stored once per day



A hybrid consensus enables us to adopt PoW economics with security mechanisms like 
slashing to provide maximally reliable onchain data with performant execution.



Consensus algorithm
Irys uses a process known as efficient sampling, where the chain guarantees every partition 
is sampled entirely once per day.

The algorithm can be summarized as so:



There is a VDF running “ticks” every 1 second, generating a seed

For every partition a miner stores, use the seed in a deterministic random function to 
generate the  start position of a range

Read 200MiB worth of chunks (800)

For each chunk, calculate a solution


          a.  Convert into a number

If the solution is greater than the current network difficulty, then publish the block. If it’s 
below the difficult,y then go back to step 1



The idea here being that miners are continuously sampling data to participate in consensus 
creating a strong guarantee around data being sampled. If miners lose data then they can be 
challenged and ultimately slashed if proven malicious.

VDF to synchronize read speed

Data transaction lifecycle
Each data transaction specifies a ledger the data should be stored in, and each ledger 
represents a duration the data should be stored for; for example, a transaction could 
represent “I want to store this 1 GB of data in ledger 0, which stores data for 2 weeks”. Once 
a user has posted a transaction and all ingress proofs have been verified, the data is XOR’d 
into a partition where it can be used in consensus proofs. 





The only special case is when the transaction specifies the permanent ledger. In this case, 
the transaction enters the submit ledger and then migrates to the permanent ledger once 10 
miners have proved they’re storing the data.


One key requirement for Irys was to force people to use HDDs, or in other words, don’t allow 
people to outcompete by using SSDs. A VDF is used to achieve this by only allowing 200MB 
to be read every second per partition a miner stores, essentially limiting the read speed of 
each partition at 200MB (approximately the max read speed of an HDD).

If the difficulty is greater than the network difficulty and the miner has sufficient stake, the 
block is accepted.

Ingress proofs

An ingress proof is a Merkle root that can only be generated by accessing the chunks of a 
transaction's data. Ingress proofs are used to prove a miner has some data. This is a 
required step before miners can store data, providing evidence that they store a unique 
replica of the data. 





The data chunks are hashed together with the miner's address to create a proof unique to 
that mining address. This process makes the proofs easy to generate and validate by 
someone with the data. To prevent false claims, these proofs must also be signed by the 
miner's private key. Without this signature, any miner with access to the data could generate 
proofs for another mining address, falsely claiming that they had downloaded the data.




Identify recently added transactions in the submit ledger that are waiting to be promoted to 
the publish ledger. Obtain the data associated with these transactions, either directly from a 
user or through gossip with other miners.

Once all the data chunks are collected, create an ingress proof as follows:



 Split the data into chunks and hash each chunk together with the miner's address.

       (note: chunk 5 is split into 5a and 5b to build a more balanced Merkle tree.)


Continue hashing these hashes to build the branches of a Merkle tree.

Compute the root hash of the Merkle tree.

Sign the root hash with the private key associated with the mining address used in step 1.

IrysVM and programmable data
Irys introduces IrysVM, an EVM++ implementation, which adds new opcodes. The main 
upgrade made is to enable programmable data –– the use of stored data within smart 
contracts. Essentially this means you could store 1EB of data and use portions of the data 
within a secure environment.





To fully implement programmable data, we must integrate the feature across multiple layers 
in the tech stack. Starting with transactions that allow the caller to specify the range of 
chunks they wish to access with their PD SmartContract call. Next, gossip the transaction 
and request the range of chunks to verify their availability. Finally, include the transaction in a 
block and execute the state transition.




Posting Transactions

To post a PD transaction the transaction must specify the range of chunks it wishes to have 
available during the SmartContract invocation. To maintain compatibility with EVM toolchains 
this is done by including the range of chunks to reference as elements using  
access lists, where the address is the address of the PD precompile, and the data is one or 
more range specifications.

EIP-2930

Range Specification

Chunk range specification follows a simple format.

<partition_index>:<offset>:<chunk_count>

partition_index: The partition index in the publish ledger of the partition containing the first 
chunk.


offset: The chunk offset in the partition to begin reading chunks


chunk_count: The number of sequential chunks to read after offset





partition_index: 26 bytes - 0 to a lot


offset: 4 bytes - 0 to ~80,000 (num chunks in a partition)


chunk_count: 2 bytes - 0 to 65,535  (PD is constrained to about 7,000 chunks per block, so 
this is safe by an order of magnitude)





Total Binary Bytes to represent a range: 26+4+2= 32 bytes





Constraining the range to 32 bytes makes it easily storable in the EVM smart contract state. 


https://eips.ethereum.org/EIPS/eip-2930


Note: Ranges are always 32 bytes, and the values are unpacked by slicing the bytes at the 
correct offsets for each value.

Irys Client SDK

The default way of referencing data on Irys is by using the transaction ID, putting the burden 
on the developer to locate the partition and chunk offset of the data they are interested in for 
PD is high friction and requires a lot of knowledge of the internal data model of the chain.





To simplify the process of posting PD transactions, the client SDK implements some utility 
methods to abstract away the complexity of specifying chunk ranges.


Estimating Transaction Price

The price of PD is determined by the same transaction simulation that estimates gas prices 
for posting transactions to the EVM. Because the chunk range is included in the call data of 
the transaction, when the simulation is run the simulation mechanism includes the pricing for 
the number of chunks needed to be retrieved along with the computational budget of the 
transaction.



To read more about how PD chunks are priced, see the following document.

Gossip & Mempool

An important constraint on PD transactions is the maximum capacity for propagating PD 
chunks between a majority of nodes on the network between blocks.

Transmission

When a node receives a PD transaction, it broadcasts it to its peers, indicating whether it has 
the chunks. Receiving peers may request the chunks in their response.


The broadcasting node tracks which peers need the chunks and sends them after receiving 
them.

const =chunkRange getTxChunkRange(txid);

The implementation of this function is provided by the gateway the client is using.



It looks up the bundle_txid if the txid is actually a DataItem ID

It verifies the txid is in the Publish Ledger

It looks up the chunk_offset in the Publish Ledger

It looks up the partition_index in the Publish ledger.

It uses 3 & 4 to compute the partition_offset.

It uses the Publish Ledger txid to look up the size of the transaction data.

It computes the number of chunks required to read the transaction.

It builds a Range Specification and returns it to the caller.

https://docs.google.com/document/u/0/d/1YtDAtOIQmXmvPQxgrtQxDPwB8gHLx6Ta63SNjHcX92k/edit


Receiving peers also broadcast the PD transaction, marking peers that have already 
received it and noting which peers have the chunks.




When a peer receives the chunks, it sends them to peers lacking them.




If a peer hasn't received the chunks after some time, it may retrieve them from assigned 
storage partitions by inspecting the ledger, locating partition owners, and requesting the 
chunks from a randomly chosen partition.


Validation

Transaction validation follows the same static validation as other transactions. 





Chunk validation is a little more complicated. PD Transaction chunks can be retrieved in a 
number of ways.




The node has the cached unpacked chunks locally.

The node has the packed chunks in a partition they mine.

The node receives unpacked chunks from a peer.

A node requests packed/unpacked chunks from a peer.

Cached Unpacked Chunks: In this case, the node has already validated the chunks with 
their Merkle roots and can be confident the data in them is correct and ready to be exposed 
to the VM for PD execution.

Local Packed Chunks: The node happens to mine the partition that contains the PD chunks 
requested by the transaction, but they are packed.

The node:



Creates the entropy for the chunk range

Unpacks the chunks using the computed entropy

Builds a merkle-root out of the unpacked chunks

Looks up the transaction that posted the chunks from its block index

Compares the computed merkle-root with the one in the transaction.

If valid, the node posts the unpacked chunks to any peers marked as not having them.

Receives Unpacked Chunks: In this case the node is being sent unpacked chunks by one 
of their peers. While they do not have to unpack the chunks they do need to verify the 
chunks contain the correct data or risk proposing an invalid block.


The Node:




Follow steps 4-6 from the Local Packed Chunks path.

Requests Chunks: As a failsafe, if the node is not receiving any of the chunks within time D, 
where D is the propagation delay of the network (Assume D = 200ms for testnet). 


The node:




Looks up the partitions responsible for storing the chunks.

Picks a partition at random to request the chunks.


          a.  If the partition provides packed chunks, unpack them.

Follow steps 4-6 from the Local Packed Chunks path.



Block Production

After a mining node receives a PD transaction and its chunks and validates them, it can 
include the transaction in a block. To minimize the chance of producing a block with a PD 
transaction that the majority haven’t received the chunks for, the miner may wait for the 
propagation delay D before including it. This allows most of the network to retrieve the 
chunks and validate the PD transaction when it's included in a block.

Exposing Chunk Data

PD transactions include an instruction to a precompiled “system” contract which takes the 
Range specification as an input. This precompile will bring the chunk data into scope. There 
are at least two possible approaches.

Smart Contract Execution
Executing a PD smart contract interaction requires further exploration. There are a few 
possible approaches, but they will require exploration of the code to evaluate their feasibility.

Return Value: The foreign call to the precompiled “system” contract could return the 
chunks specified by the range as a buffer.

Global State: Once the precompiled “system” contract has been invoked the chunks 
become accessible via a global that is exposed to all subsequent instructions in the PD 
transaction.

Calculating Compute Units

Because the execution of a particular smart contract function may take one code path or 
another depending on the data read from the chunks, calculating compute units (CUs) can 
be problematic. There are a few possible approaches

Simulate With Chunks: The only way to deterministically simulate the CUs required to 
complete the execution of the instruction is to have the unpacked chunks available 
during the simulation. This would require the simulating node to retrieve the unpacked 
chunks during the simulation request.

Simulate Compute Upper Bound: In this case, the simulation would evaluate all code 
paths and return the cost of the most compute-intensive code path. This way the user 
always pays enough gas for any possible computational resources.



Programmable data roadmap
Blob Data - MVP

The first version of PD transactions will expose chunks as buffers or blob data to the contract 
and leave the interpretation of these bytes up to the caller.  This will allow PD chunks to have 
any structure or format the caller can imagine.

Bundle Format v.1 - Bundles

Once the blob chunks are working, the next layer of functionality will be a DX upgrade that 
allows PD contracts to load a bundle and data items from the chunks. The IrysVM will parse 
the chunks in the range specification as a v1 bundle format.

Bundle Format v.2 - DataItems

Once the v2 (merkelized) bundle format exists, a DX upgrade will allow parsing of specific 
data items from a larger bundle or retrieve smaller nested bundles (or their data items) by 
loading only the chunks that store the specific data items the caller is interested in.

Programmable data L2s

In the future, we expect users will develop programmable data L2s that expand the compute 
capacity beyond a single-state machine. The end goal here is a shared dataset with the 
ability for anyone to spin up L2s to tap into data, compute, and liquidity resources.

Tokenomics
Token utility

The IRYS token is composed of four core components:

$IRYS : The $IRYS token is the Irys platform native asset.


Fees: Fees are charged on , including payment for data storage 
and protocol execution. Unlike other datachains, both temporary and permanent data 
storage fees are pegged to a USD range and updated on a yearly basis.


Security: Token rewards are used to incentivize node validators contributing to 

 and to prevent spam and denial-of-service attacks.


Endowment: $IRYS is used to fund the endowment, which covers miners’ future 
liabilities


Staking: Miners must , signaling their commitment to the 
network and creating clear economic consequences for failing to uphold their 
responsibilities. Users will also be able to delegate $IRYS tokens in order to passively 
participate in contributing to the network’s security model.

all network operations

Irys 
consensus

lock $IRYS tokens as collateral

https://docs.irys.xyz/learn/protocol-overview/transactions-overview
https://docs.irys.xyz/learn/protocol-overview/irys-consensus-overview
https://docs.irys.xyz/learn/protocol-overview/irys-consensus-overview
https://docs.irys.xyz/learn/network-overview/becoming-a-miner-on-irys


Burn mechanism

$IRYS will have strong deflationary pressure early into its lifetime as the inflationary rewards 
decay. Irys has a couple of burn mechanisms:

Long-term storage: fees paid towards “longer-term” ledgers (i.e.,>2 weeks) will be 
contributed to an endowment where the tokens will likely never be released, creating an 
effective burn/sink mechanism.

Fee market on execution transaction: Irys will burn 50% of fees from execution 
transactions, so as programmable data demand increases, there’ll be greater burn 
occurring.

Incentivizing hardware

Irys adopts a traditional inflation decay curve which is distributed via block rewards to miners 
for storing data. The starting inflation rate is 8% and halves every 2 years.





[Insert graph to represent curve]


Fees
Minimum Fee Parameter

Irys implements a minimum fee to mitigate network spam and to ensure that tx fees can be 
easily denominated with the atomic units.





The minimum fee is $0.001 (1/10th of a cent) as determined by Irys’ price approximation 
mechanism.





The same minimum fee is paid to the provider of ingress-proofs for publishing permanent 
data.

Term Fees

The pricing model for term storage determines the cost of providing storage for data, 10 
replicas for n epochs

Pricing Parameter

Annualized Cost of operating 16TB HDD 

Number of Replicas

Calculation

Daily Cost per TB

Daily Cost of 16TB HDD

Total Fee Per Epoch Storage Price (TB)

Total Fee Per Epoch Storage Price (GB)

Epoch Fee Calculator

Number of Epochs

1

5

Value

$44

10

Value

$0.0075

$0.12

$0.0753

$0.00007358

Data Size (TB)

1

1

Total Fee Per Epoch Storage Price

$0.0753

$0.3767



An additional 5% fee is added for inclusion in the block (scales with the size of transaction 
data)

As  $0.00039 is below the network minimum fee of $0.01 the  becomes:term_fee

1TB of Term Data in the Submit ledger ( 5 epochs )

term_fee
term_fee

 = term_cost + 5% 


 = $0.3767 + 5% = 0.3955 -> $0.40

1GB of Term Data in the Submit ledger ( 5 epochs )

term_fee = $0.00039


term_fee = $0.01

Note: if repacking term partitions after they expire represents an ongoing expense to miners, 
this cost will be quantified and included in the term data pricing.

Perm Fees

The pricing model for permanent data has some additional factors to account for. Because 
the users are paying for centuries of storage upfront the model has to account for declines in 
the physical costs of storage (due to technological gains) over that time period. Irys chooses 
an extremely safe 1% annualized decline in the cost of storage as a factor for pricing 
permanent data. (Observed declines in storage costs over the last 50 years have been > 
25% year on year.)

Because permanent data must first pass through the submit ledger (term data) on its way to 
the publish ledger, the fee includes the cost of submit ledger storage as well.





Perm data requires 10 ingress-proofs, ingress-proofs are the same as the 5% immediate 
reward for including the transaction in a block. (scales with data size, shares the minimum 
$0.01 fee floor).


Pricing Parameter

Annualized Cost of operating 16TB HDD 

Safe annual decline in cost of storage (decay rate)

Number of Replicas

Years of storage paid for

Cost Per TB

Cost Per GB

Values

$44

1.00%

10

200

$2,381.54

$2.33



1TB of Permanent Data

perm_fee  term_fee = + (ingress_fee * 10) + perm_cost

perm_fee = $0.40 + ($0.018835 * 10) + $2,381.56 -> $2,382.14

1GB of Permanent Data

perm_fee = term_fee + (ingress_fee * 10) + perm_cost


perm_fee = $0.01 + ($0.01 * 10) + $2.33 -> $2.44

If a user fails to upload data during the submit ledger term duration or the network fails to 
achieve the required number of ingress-proofs, the user’s ingress_fee’s and perm_cost are 
refunded when the submit ledger transaction expires at the end of 5 epochs (the submit 
ledger term duration)

Consensus Pricing Mechanism

The process of promoting data from the submit ledger to the permanent ledger involves 
multiple phases, resulting in a staged payment model for permanent data. All transactions, 
whether intended for permanent (perm) or temporary (term) data, initially enter the submit 
ledger. The payment process for term data is consistent across all transactions, while 
permanent data incurs additional payments to incentivize the complete publishing process.

Term Data Payment Distribution

Additional Incentives

This payment structure creates additional incentives for miners to participate in term 
ledgers:



Miners receive a payout when data expires from their partitions.


Because miners must re-pack the partitions after expiration, this additional fee 
encourages ongoing participation and maintenance of the network.



The user uploads data chunks associated with their transaction .

Miners assigned to store chunks gossip them amongst themselves.

Term ledger expiration payout:

U ser posts a transaction, including the term_fee.

Block producer transaction inclusion:

Block producer includes the transaction in a block .

Block producer's balance increases by 5% of the term_fee.

Remaining 95% of term_fee is added to the treasury (tracked in block headers).

W hen the transaction expires from the submit ledger (when the partitions containing 
its chunks are reset at an epoch boundary), each miner is paid their portion (term_fee 
/ 10) for all assigned chunks expiring in their partition.

For a full 16TB partition, this payout is approximately $0.60 per miner.

Miners continue to earn full inflation/block rewards from any blocks they produce while 
mining these partitions.



Permanent Data Payment Distribution

Fee Structure

Users pay the following fees for permanent data storage:



term_fee: Standard fee for term storage

perm_fee: Fee for permanent storage

5% of term_fee for block inclusion

5% of term_fee for each ingress-proof

Fee Distribution

term_fee: Processed identically to regular term data transactions.

Block Inclusion Fee:

5% of term_fee paid immediately to the block producer including the transaction.

Ingress-Proof Fees:

5% of term_fee for each ingress-proof provided.

perm_fee:

Prepaid amount covering 200 years x 10 replicas with 1% annual decline in storage 
costs.

Added to the treasury.

Submit Ledger Expiry (Epoch Boundary) 
Processing
Refund Scenario

If transaction data was never uploaded:



Ingress-proof fees and perm_fee are refunded to the uploader.

Promotion Scenario

If data was promoted to permanent storage:



Protocol inspects all permanent transactions with ingress-proofs.

Pays out the ingress-provers.

Epoch Boundary Payment Distribution Tasks

For each expiring submit ledger transaction:

Inspect the transaction to determine if it was intended for the publish ledger.

If intended for publish ledger, check if it arrived:

If Published: Reward ingress-proof submitters with their 5% rewards.



If not Published: Refund perm_fee and ingress-proof fees to the address that posted 
the tx.

Tabulate the amount of data posted to the expiring partition.

Pay each partition owner the term_fee for storing that amount of data.

Future work
Scaling programmable data

Programmable data at its core is the ability to have a shared dataset where any can 
permissionlessly access and build onchain applications atop. A key part of achieving this end 
vision is Programmable Data L2s. 





These L2s would scale IrysVM and enable a trustless bridge to Irys’s dataset. The end goal 
of this is to have a shared dataset of the public and private states, allowing anyone to 
compose on the data.





For the public state, anyone can use the data permissionlessly for their apps. Licensing can 
be used to monetize the usage of this data. Private state can utilize private compute 
primitives to enable apps to interact with the data.


Fast blocks and fast finality

Building applications on Irys will benefit from faster block times and programmable data L2s 
will need fast finality for composability.


